CLONE-BASED PHYSICAL MAPPING

Eric D. Green, M.D., Ph.D. Chief, Genome Technology Branch (NHGRI) Director, NIH Intramural Sequencing Center

Phone: 301-402-0201

FAX: 301-402-4735

E-Mail: egreen@nhgri.nih.gov

Clone-Based Physical Mapping

Large DNA Cloning Systems

Fundamentals of Physical Mapping

 A. Cosmids (Fosmids) B. P1s

I.

II.

C. PACs D. BACs

E. YACs

III. Strategies for Physical Mapping

Future Prospects

General Plan for Lecture:

Stress the Practical Aspects of Physical Mapping

IV. Clone-Based Physical Maps of Mammalian Genomes

Focus on the Mapping of Mammalian Genomes

Highlight Relevant Literature

Provide Information on Relevant Electronic Resources

Genome Sizes

Human Genome

Human Chromosome (average)

130,000,000 bp

Fruit Fly Genome

160,000,000 bp

Nematode Genome

100,000,000 bp

Yeast Genome

15,000,000 bp

E. coli Genome

5,000,000 bp

Fundamentals of Physical Mapping

Importance of Physical Maps:

Localization and Isolation of Genes (e.g., Positional Cloning) Study of Genome Organization and Evolution Framework for Systematic DNA Sequencing

- "Mapping is About Order"
 -Maynard Olson (1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999...)
- Physical Mapping Involves:

Ordering of Clones and/or Landmarks
Typically with Some Physically Measurable Metric

Examples of 'Landmark Only' Ordering:

Restriction Mapping by Pulsed-Field Gel Electrophoresis Radiation Hybrid (RH) Mapping

Theoretical Discussions of Clone-Based Physical Mapping

Arratia et al. (1991), Barillot et al. (1991), Palazzolo et al. (1991), Olson and Green (1993)

• Clone-Based Physical Mapping: 'Jigsaw Puzzle Analogy'

Large DNA Cloning Systems

- Reasonably Arbitrary Definition of 'Large'
- Bacterial- (Dunham et al. 1998) vs. Yeast-Based Host Systems
- Want the Cloned DNA to Accurately Reflect the Starting Genome

Problem of Instability Problem of Chimerism

• Development of 'Array Mentality' for Clone Libraries

Clones Arrayed in Individual Wells of Microtiter Plates Various Densities Available (96-, 192-, and 384-Well Plates)

- Advantages of Arrayed Clone Resources ('Reference Libraries')
 - 1. Simplicity of Storing and Transferring Clone Collections
 - 2. Repeated Hybridization-Based Screening
 - 3. Repeated PCR-Based Screening
 - 4. Convenient Format for Retrieving Clones of Interest
 - 5. Ability to Assimilate Data on Common Clones

Hybridization-Based Analysis of High-Density Arrays

Bentley et al. (1992), Ross et al. (1992), Olsen et al. (1993)

PCR-Based Analysis of Arrayed Libraries

Green and Olson (1990) Pool Cells and Purify DNA Single-Filter Pools Pool Aliquots from Each Single-Filter Pool **Multi-Filter Pools** 6-10 11-15 16-20 16-20 21-25 26-30 31-35 31-35 36-40 41-45 56-60 F1-55 56-60 Yeast Test Multi-Filter Pools by PCR Test Appropriate Single-Filter Pools by PCR Filter 3 Filter 3 Test Appropriate Test Appropriate Filter by Colony Filter by PCR Hybridization Analysis of Sub-Pools (e.g., Rows + Columns)

Commercial Involvement in Clone Distribution

Research Genetics, Inc.

800-533-4363 205-533-4363 http://www.resgen.com

Genome Systems, Inc.

800-430-0030 314-692-0033 http://www.genomesystems.com

ATCC

800-638-6597 703-365-2700 http://www.atcc.org/

Cosmids

- Bacterial-Based Cloning System
- 'Antique' of the Large DNA Cloning Systems
- Plasmid Vector with Bacteriophage Packaging Sequences (cos Sites)
- High Efficiency Packaging System

 Relatively Homogeneous Insert Sizes

 Librarias from Small Amounts of DNA (e.g. Flow Sorted DNA)

Libraries from Small Amounts of DNA (e.g., Flow-Sorted DNA)

Antibiotic Selection

- Cloned Inserts: 35-45 kb, Circular DNA
- High Copy Number

High Yields of DNA by Standard Methods Instability Problems (Despite Recombination-Deficient Hosts)

- Relatively Non-Chimeric
- Various Libraries (Whole Genomes, Individual Chromosomes)
- References

Sambrook et al. (1989), Wahl et al. (1987), Nizetic et al. (1991), Evans et al. (1992), Ivens et al. (1993), Evans (1998)

• 'Fosmids' [Kim et al. (1992)]

Cosmid Vector Engineered with F Factor
Low Copy → More Stable

P1 Clones

- Bacterial-Based Cloning System
- Developed by Sternberg (1990)

Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs

(DNA packaging/pac cleavage/genome mapping/gene isolation)

NAT STERNBERG

- Bacteriophage P1 (Genome Size: 100 kp)
- P1-Based Vector and Complex P1 Packaging Extracts
 Limited to 100 kb (Constraints of Viral Particle)
 2 loxP Sites Results in Circularization of DNA
 Antibiotic Selection
- Cloned Inserts: 70-100 kb, Circular DNA
- Low Copy Number

Low Yields of DNA by Standard Methods
Highly Stable (with Recombination-Deficient Hosts)
Potential for IPTG Induction→ 10-30 Fold Increase

- · Relatively Non-Chimeric
- Human and Mouse Libraries Commercially Available
- References

Sternberg (1990), Sternberg et al. (1990), Pierce and Sternberg (1992), Shepherd et al. (1994), Sternberg (1998)

P1-Derived Artificial Chromosomes (PACs)

- Bacterial-Based Cloning System
- Developed by Ioannou et al. (1994)

A new bacteriophage P1-derived vector for the propagation of large human DNA fragments

Panayiotis A. Ioannou¹, Chris T. Amemiya¹, Jeffrey Garnes¹, Peter M. Kroisel¹, Hiroaki Shizuya², Chira Chen^{1,3}, Mark A. Batzer¹ & Pieter J. de Jong^{1,3}

Slightly Modified P1 Vector

Lacks Packaging Signal Antibiotic Selection

- Transform by Electroporation
- No Packaging of DNA → Larger Size Capacity
- Cloned Inserts: 100-150 kb, Circular DNA
- Low Copy Number

Low Yields of DNA by Standard Methods Highly Stable (with Recombination-Deficient Hosts)

- Relatively Non-Chimeric
- Human and Mouse Libraries Available (see http://bacpac.med.buffalo.edu)

Bacterial Artificial Chromosomes (BACs)

- Bacterial-Based Cloning System
- Developed by Shizuya et al. (1992)

Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in *Escherichia coli* using an F-factor-based vector

(electroporation/physical mapping/human genome)

HIROAKI SHIZUYA*, BRUCE BIRREN, UNG-JIN KIM, VALERIA MANCINO, TATIANA SLEPAK, YOSHIAKI TACHIIRI, AND MELVIN SIMON[†]

- Based on the E. coli F Factor (Fertility Plasmid): Replication Control
- BAC Vectors

Cloning site in LacZ Gene (Blue/White Selection)
Antibiotic Selection

- Transform by Electroporation
- No Packaging of DNA → Larger Size Capacity
- Cloned Inserts: 100-200 kb, Circular DNA
- Low Copy Number

Low Yields of DNA by Standard Methods Highly Stable (with Recombination-Deficient Hosts)

- Relatively Non-Chimeric
- Numerous Libraries Available (see http://bacpac.med.buffalo.edu)
- See Birren et al. (1998)